

# TEMPERATURE CONTROLLER



## **USER'S MANUAL**

CE

# CONTENTS

| 1.  | APPLICATION                            | 5  |
|-----|----------------------------------------|----|
| 2.  | CONTROLLER SET                         | 5  |
| 3.  | BASIC REQUIREMENTS, OPERATIONAL SAFETY | 6  |
| 4.  | INSTALLATION                           | 6  |
|     | 4.1. Controller Installation           | 6  |
|     | 4.2. Electrical Connections            | 8  |
|     | 4.3. Installation Recommendations      | 9  |
| 5.  | STARTING TO WORK                       |    |
| 6.  | SERVICE                                |    |
|     | 6.1. Programming Controller Parameters |    |
|     | 6.2. Programming Matrix                |    |
|     | 6.3. Setting Change                    | 14 |
|     | 6.4. Parameter Description             | 14 |
| 7.  | CONTROL                                |    |
|     | 7.1. ON-OFF Algorithm                  | 17 |
|     | 7.2. Innovative SMART PID algorithm    |    |
| 8.  | ALARMS                                 | 20 |
| 9.  | ADDITIONAL FUNCTIONS                   | 21 |
|     | 9.1. Displaying the controller signal  | 21 |
|     | 9.2. manual Control                    | 22 |
|     | 9.3. Manufacturer's Setting            | 22 |
| 10. | ERROR SIGNALLING                       | 23 |
| 11. | TECHNICAL DATA                         | 24 |
| 12. | KONTROLLER EXECUTION CODES             | 27 |
| 13  | MAINTENANCE AND GUABANTEE              | 29 |
|     |                                        |    |

# 1. APPLICATION

The RE71 controller is destined for the temperature control in plastics, food, dehydration industries and everywhere when the temperature stabilizing is necessary.

#### Main features of the RE71 controller:

- direct co-operation with resistance thermometers (RTD) or thermocouple (TC) sensors,
- two-stage control acc. to the PID or ON-OFF algorithm,
- one control output or alarm, relay output with make-and-break configuration, allowing to the direct control of low power objects

An innovative SMART PID algorithm has been implemented in the controller.

#### 2. CONTROLLER SET

The delivered controller set is composed of:



When unpacking the controller, please check whether the type and execution code on the data plate correspond to the order.

#### 3. BASIC REQUIREMENTS, OPERATIONAL SAFETY

In the safety service scope, the controller meets to requirements of the EN 61010-1 standard.  $\ref{eq:standard}$ 

#### Observations Concerning the Operational Safety:

- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- Before switching the controller on, one must check the correctness of connections to the network.
- The removal of the controller casing during the guarantee contract period may cause its cancellation.
- The controller fulfills requirements related to electromagnetic compatibility in the industrial environment
- When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the room. This switch should be located near the controller, easy accessible by the operator, and suitably marked as an element switching the controller off.
- Non-authorized removal of the casing, inappropriate use, incorrect installation or operation, creates the risk of injury to personnel or meter damage.

For more detailed information, please study the User's Manual.

#### 4. INSTALLATION

#### 4.1. Controller Installation

Fix the controller in the panel, which the thickness should not exceed 15 mm, by means of four screw clamps acc. the fig. 1.



Fig. 1. Controller fixing

The panel cut-out should have  $45^{+0.6} \times 45^{+0.6}$  mm dimensions.

The controller must be introduced from the panel front with disconnected supply voltage. Before the insertion into the panel, one must check the correct placement of the seal.

After the insertion into the hole, fix the controller by means of screw clamps.

Controller overall dimensions are presented on the fig. 2.



Fig. 2. Controller overall dimensions

#### 4.2. Electrical Connections

Make electrical connections to terminal strip and next, insert strips into the controller sockets.

The controller has two separable terminal strips. One strip enables the connection of the supply and outputs by a wire of  $2.5 \text{ mm}^2$  cross-section, the second strip enables input signal connections by a wire of 1.5 mm<sup>2</sup> cross-section.



Fig. 3. View of controller connection strips.



Fig. 4. Connection of input signals.



Fig. 5. Connection of the supply and load circuit.

# 4.3. Installation Recommendations

In order to obtain a full fastness against electromagnetic noise in an environment with unknown noise level, it is recommended to observe following principles:

- do not supply the controller from the network, in the proximity of devices generating high pulse noise and do not apply common earthing circuits,
- apply network filters,
- apply metallic shields in the shape of tubes or braids to conduct supplying wires,
- wires leading measuring signals should be twisted in pairs, and for resistance sensors in 3-wire connection, twisted of wires of the same length, cross-section and resistance, and led in a shield as above,
- all shields should be one-side earthed or connected to the protection wire, the nearest possible to the controller,
- apply the general principle, that wires leading different signals should be led at the maximal distance between them (no less than 30 cm), and the crossing of these groups of wires made at right angle (90°).

# 5. STARTING TO WORK

After switching the supply on, the controller carries out the display test, displays the  $r \in ?$ , inscription, the program version and next, displays the measured value.

A character message informing about abnormalities may appear on the display (table 4). The On-Off control algorithm with hysteresis given in the table 2 is set by the manufacturer.

#### Changing the Set Value

The set point value is displayed after pressing the vorte vorte button, then the SP diode is lighting. In order to change the set value, one must press the vorte or button again (fig. 6). The beginning of the change is signaled by the dot flickering on the display. One must accept the new set point value by the vorte button in the laps of 30 seconds from the last pressure of the vorte or button, in the opposite case, the controller transits to display the measured value with the previously set up set point value.



Press the push to change the set value

Fig. 6. Change of the set value.

#### 6. SERVICE

The controller service is presented on the Fig. 7.



#### 6.1. Programming Controller Parameters

The pressure and holding down the <u></u>button during ca 2 seconds causes the entry in the programming matrix. The programming matrix can be protected by an access code. In case when giving a wrong value of the code, it is only possible to see settings through – without possibility of changes.

The fig 8. presents the transition matrix in the programming mode. The

transition between levels is carrying out by means of the III and

▲ buttons and the level choice by means of the ← button. After choosing the level, the transition between parameters is carried

out by means of **T** and **A** buttons. In order to change the parameter setting, one must proceed acc. to the section 6.3. In order to exit from the selected level, one must transit between parameters

until the symbol [. . .] appears and press the *—* button. In order to exit from the programming matrix to the normal working mode, one

must transit between levels until the symbol [...] appears and press

the 💶 button.

Some controller parameters cannot be visible – it depends on the current configuration.

The table 1 includes the description of parameters. The return to the normal working mode follows automatically after 30 seconds since the last button pressure.

|                                           | 0                                      |                                     |                                                | 1                                                                           |                                                                   |                                                                                          |
|-------------------------------------------|----------------------------------------|-------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                           |                                        |                                     | • • • • • • • • • • • • • • • • • • •          |                                                                             |                                                                   |                                                                                          |
|                                           |                                        |                                     | Pulsing<br>period                              |                                                                             |                                                                   |                                                                                          |
|                                           |                                        | <ul> <li></li></ul>                 | <b>40</b><br>Working point<br>for P/PD         | <ul> <li>Transition</li> <li>to the higher level</li> </ul>                 |                                                                   |                                                                                          |
| C Transition<br>to the higher             |                                        | Hysteresis                          | <b>لا م</b><br>Differentation<br>time constant | <b>RL.אЧ</b><br>Alarm<br>hysteresis                                         | • • • • • • • • • • • • • • • • • • •                             | <ul> <li>Transition</li> <li>Transition</li> <li>to the higher</li> <li>level</li> </ul> |
| Shift of measu-<br>red value              | • • • • Transition to the higher level | <b>E 4PE</b><br>Kind of control     | L ,<br>Integration<br>time constant            | <b>PL.du</b><br>Deviation from<br>the set value<br>of the relative<br>alarm | <b>5 Ρ Χ</b><br>Upper limita-<br>tion of the set<br>value setting | <b>St.F</b> α<br>Autotuning<br>function                                                  |
| <b>σρ</b><br>Position of<br>decimal point | out<br>Output confi-<br>guration       | <b>RL L</b><br>Control<br>algorythm | <b>Pb</b><br>Proportional<br>band              | <b>P. SP</b><br>Set value vor<br>the absolute<br>alarm                      | <b>5 P2</b><br>Lower limita-<br>tion of the set<br>value setting  | SECU<br>Acces code                                                                       |

# 6.2. Programming Matrix

| input<br>Jarameters | out P<br>Output<br>barameters | <b>c とっし</b><br>Control<br>Darameters | <b>ש י</b><br>PID<br>Darameters | <b>RL R-</b><br>Alarm<br>Darameters | <b>5 P P</b><br>Set value<br>barameters | 5εrυ<br>Service<br>Darameters | <br>D Exit from<br>the menu |
|---------------------|-------------------------------|---------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------|-------------------------------|-----------------------------|
| d                   | <b>v</b> ed                   | d d                                   | be                              | - ed                                | U U U                                   | d                             | ¢≠                          |

# Fig. 8. Programming Matrix

#### 6.3. Setting Change

The change of parameter setting begins after pressing the  $\checkmark$  button during the display of the parameter name. The setting choice is carried out through  $\checkmark$  and ▲ buttons, and accepted by the  $\checkmark$  button. The change cancellation follows after the simultaneous pressure of  $\checkmark$  and ▲ buttons or automatically after 30 sec since the last push pressure.

The way to change the setting is shown on the fig. 9.



Fig. 9. Setting change of number and text parameters

#### 6.4. Description of Parameters

The list of parameters in the menu is presented in the table 1.

List of configuration parameters

| Parameter<br>symbol                     | Parameter description       | Manufactu-<br>rer setting | Change range of the parameter                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|-----------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| np – Inp                                | out parameters              |                           |                                                                                                                                                                                                                                                                                                                                                    |
| <b>dP</b> Position of the decimal point |                             | l-dP                      | <b>C</b> - <b>dP</b> : without decimal point<br><b>i</b> - <b>dP</b> : 1 decimal point                                                                                                                                                                                                                                                             |
| Sh if                                   | Shift of the measured value | 0.0                       | -99.999.9°C                                                                                                                                                                                                                                                                                                                                        |
| ουερ-α                                  | Dutput parameters           |                           |                                                                                                                                                                                                                                                                                                                                                    |
| ουε                                     | Output configuration        | у                         | <ul> <li>oFF: control switched off</li> <li>g: control signal</li> <li>RH: : upper absolute alarm</li> <li>RL: o: lower absolute alarm</li> <li>duH: : upper relative alarm</li> <li>duL: o: lower relative alarm</li> <li>duL: o: lower relative alarm</li> <li>du: o: internal relative alarm</li> <li>du: o: external relative alarm</li> </ul> |
| <b>ctrl</b> - 0                         | Control parameters 1)       |                           |                                                                                                                                                                                                                                                                                                                                                    |
| 8L []                                   | Control algorithm           | onoF                      | <b>onoF</b> : On-Off control<br>algorithm<br><b>P ·d</b> : PID control<br>algorithm                                                                                                                                                                                                                                                                |
| £                                       | Kind of control             | 100                       | d .r : direct control<br>(cooling)<br>.n u : reverse control<br>(heating)                                                                                                                                                                                                                                                                          |
| жy                                      | Hysteresis <sup>4</sup> )   | HY_FABR <sup>6)</sup>     | 0.299.9°C                                                                                                                                                                                                                                                                                                                                          |

Table 1

| <b>P</b> ·d – Parameters PID <sup>2)</sup> |                                                                  |                       |                              |  |  |  |  |
|--------------------------------------------|------------------------------------------------------------------|-----------------------|------------------------------|--|--|--|--|
| ዖሪ                                         | Proportional band                                                | PB_FABR <sup>6)</sup> | 0.1999.9°C                   |  |  |  |  |
| ٤,                                         | Integration time constant                                        | 300                   | 09999 s                      |  |  |  |  |
| ይሪ                                         | Differentiation time constant                                    | 60.0                  | 0999.9 s                     |  |  |  |  |
| 40                                         | <b>Gorrection of control signal</b><br>for P or PID control type |                       | 0100.0%                      |  |  |  |  |
| ٤٥                                         | Pulse period                                                     | 20.0                  | 0.599.9 s                    |  |  |  |  |
| RL Rr - A                                  | Alarm parameters <sup>3)</sup>                                   |                       |                              |  |  |  |  |
| RL.SP                                      | Set point value for absolute alarm                               | 0.0                   | MINMAX <sup>6)</sup>         |  |  |  |  |
| RL.du                                      | Deviation from the set value for the relative alarm              | 0.0                   | -199.9199.9°C                |  |  |  |  |
| RL.XY                                      | RLHH Hysteresis for the alarm                                    |                       | 0.299.9°C                    |  |  |  |  |
| <b>5<i>PP</i></b> – Pa                     | rameters of set point value                                      |                       |                              |  |  |  |  |
| SPL                                        | Lower limitation of the set value                                | -199.0                | MINMAX <sup>6)</sup>         |  |  |  |  |
| SPX                                        | Upper limitation of the set value                                | 850.0                 | MINMAX <sup>6)</sup>         |  |  |  |  |
| 58rP-9                                     | Service parameters                                               |                       |                              |  |  |  |  |
| SECU                                       | Access code <sup>5)</sup>                                        | 0                     | 09999                        |  |  |  |  |
| <u> </u>                                   | Autotuning function                                              | 00                    | off: locked<br>on: available |  |  |  |  |

<sup>1)</sup> Group of parameters visible only when setting the output on the control signal.

<sup>2)</sup> Group of parameters visible only when setting the control algorithm on PID.

<sup>3)</sup> Group of parameters visible only when setting the output on one of the alarm.

<sup>4)</sup> Parameter visible only when setting the control algorithm on On-Off.

<sup>5)</sup> Parameter hidden in the monitoring mode of parameters only for readout.

6) Vide table 2.

Parameters depending on the measured range

table 2

| Sensor                 |          | MIN   | MAX   | PB_FABR | HY_FABR |
|------------------------|----------|-------|-------|---------|---------|
| Resist. thermom. Pt100 | -50100°C | -50.0 | 100.0 | 15.0    | 1.1     |
| Resist. thermom. Pt100 | 0250°C   | 0.0   | 250.0 | 20.0    | 1.8     |
| Resist. thermom. Pt100 | 0600°C   | 0.0   | 600.0 | 30.0    | 4.2     |
| Thermocouple of J      | 0250°C   | 0.0   | 250.0 | 20.0    | 1.8     |
| Thermocouple of J      | 0600°C   | 0.0   | 600.0 | 30.0    | 4.2     |
| Thermocouple of J      | 0900°C   | 0.0   | 900.0 | 40.0    | 6.3     |
| Thermocouple of K      | 0600°C   | 0.0   | 600.0 | 30.0    | 4.2     |
| Thermocouple of K      | 0900°C   | 0.0   | 900.0 | 40.0    | 6.3     |
| Thermocouple of K      | 01300°C  | 0     | 1300  | 45.0    | 9.1     |
| Thermocouple of S      | 01600°C  | 0     | 1600  | 50.0    | 11.2    |

# 7. CONTROL

#### 7.1. On-Off Control

When a high accuracy of temperature control is not required, especially for objects with a high time constant and not big delay, one can apply the On-Off control with hysteresis.

Features of this method are simplicity and reliability. Disadvantage of this method is the occurrence of oscillations, even at small hysteresis values.



Fig. 10. Operation way of the heating output type for the On-Off control.

#### 7.2. PID Control

When we want to obtain a higher accuracy of temperature control, one must use the PID algorithm.

The applied innovative SMART PID algorithm is characterized by an increased accuracy for the expanded range of control object classes.

The fine tuning of the controller to the object consists on the settlement of the proportional element, integration element, differentiation element and output pulsing period.

#### 7.2.1. Autotuning

The controller has the function enabling the choice of PID settings. These settings ensure the optimal control in most of cases.

To begin the autotuning, one must transit to the  $\mathcal{L} \cup \mathcal{A} \mathcal{E}$  parameter (acc. to the fig. 7) and hold down the  $\mathcal{L} \cup \mathcal{A}$  button during at least 2 sec. If the control algorithm is set on ON-OFF or the autotuning function is locked, then the  $\mathcal{L} \cup \mathcal{A} \mathcal{E}$  message is hidden.

The flickering AT symbol informs about the activity of the autotuning function. The autotuning duration time depends on dynamic properties of the object and can last maximally 10 hours. During the autotuning or directly after it, over-regulations can occur and for these reasons, one must set a less setpoint value, if it possible.

The autotuning is composed of following stages:



The autotuning process will be broken without PID settings calculations,

if a controller supply decay occurs or the  $\frown$  . button is pressed. In such a case, the control with current PID settings will begin.

If the autotuning experiment does not end with success, then an error code will be displayed acc. to the table 3.

Error codes for autotuning

Table 3

| Error code    | Reason                                                                                                                     | Proceeding                                                                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 85.07         | P lub PD control has been chosen.                                                                                          | One must choose PI, PID<br>control, i.e. the TI unit must be<br>higher than zero.                                                             |
| E 5.03        | The 💶 button has been pressed pressed .                                                                                    |                                                                                                                                               |
| 85.04         | The maximal autotuning dura-<br>tion time Has been exceeded.                                                               | Check, if the temperature sen-<br>sor is correctly situated, if the                                                                           |
| <i>E</i> 5.05 | The waiting time of switching has been exceeded.                                                                           | set point value is not set too<br>higher for the given object.                                                                                |
| E 5.08        | The input measuring range has been exceeded.                                                                               | Take note of the way to con-<br>nect the sensor. Do not admit<br>that the overflow results in<br>exceeding of the input mea-<br>suring range. |
| £5.20         | Very non-linear object, unab-<br>ling to obtain correct values of<br>PID parameters, or an interfe-<br>rence has occurred. | Carry out the autotuning<br>again. If that does not help,<br>choose PID parameters<br>manually.                                               |

#### 7.2.2. Proceeding Way in Case of an Unsatisfactory PID Control

It is recommended to choose PID parameters, changing the value in a twice higher or twice less. During the change, one must respect following principles.

- a) Slow response of the jump:
  - decrease the proportional band,
  - decrease the integration and differentiation time.
- b) Over-regulations
  - increase the proportional band,
  - increase the differentiation time.
- c) Oscillations
  - increase the proportional band,
  - increase the integration time,
  - decrease the differentiation time.
- d) Instability
  - Increase the integration time.

#### 8. ALARMS

One can configure the controller output as an alarm output. For this aim, one must set the **out** parameter as one of alarms.

Available types of alarms are given on the fig. 11.





Fig. 11. Kind of alarms

The set point value for absolute alarms is the value defined by the *RLSP* parameter, and for relative alarms, it is the deviation from the set point value - *RLdu* parameter.

Alarm hysteresis, i.e. the zone around the set point value in which the input state is not changed is defined by the **RLHY** parameter.

# 9. ADDITIONAL FUNCTIONS

#### 9.1. Displaying the Control Signal

After pressing the  $\frown$  button, the value of the control signal (0...100%) is displayed on the display. On the first digit the **h** mark is displayed. The control signal can be displayed when the **out** parameter is set on **4**.

#### 9.2. Manual Control

The manual control gives the possibility to identify, test the object, or control it after a sensor damage. The entry to the manual control mode follows after holding the  $\frown$  button down during the control signal display. The manual control is signalled by the pulsation of the diode with  $\Downarrow$  symbol.

The controller breaks the automatic control and begins the manual control of the output The value of the control signal, preceded by the  $\mathbf{h}$  symbol, is on the display.

For the ON-OFF control – the control signal can be set up by 💌 and 🔺 buttons on 0% or 100%.

For the PID control – the control signal can be set up by v and buttons on any optional value from the 0.0...100% range.

The exit to the normal work mode follows after a simultaneous pressure of by 💌 and 🔺 buttons.

#### 9.3. Manufacturer's Settings

One can restore manufacturer's settings holding down  $\checkmark$  and  $\checkmark$  buttons during the supply turning on, till the moment when the inscription *FRbr* appears on the display.

#### **10. ERROR SIGNALING**

# Character messages signaling the incorrect controller operation

Table 4

| Error code<br>(upper<br>display) | Reason                                                                        | Procedure                                                                                                                                                                                                                                                                     |
|----------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Down overflow of the<br>measuring range or lack<br>of RTD.                    | Check, if the type of chosen<br>sensor is in compliance with the<br>connected one. Check if input<br>signal values are situated in the<br>appropriate range – If yes, check<br>if there is not a short circuit in the<br>RTD or the thermocouple is con-<br>nected inversely. |
|                                  | Upper overflow of the<br>measuring range or<br>break in the sensor<br>circuit | Check, if the type of chosen sen-<br>sor is in compliance with the con-<br>nected one. Check if input signal<br>values are situated in the appropri-<br>ate range – If yes, check if there is<br>no break in the sensor circuit.                                              |
| Er.Rd                            | Input discalibrated                                                           | Connect the controller supply<br>again and if that is not effective,<br>contact the nearest service shop.                                                                                                                                                                     |
| Er.88                            | Error in the controller configuration                                         | Connect the controller supply again and if that is not effective, contact the nearest service shop.                                                                                                                                                                           |

# 11. TECHNICAL DATA

#### Input Signals

Input signals and measuring ranges for inputs

Table 5

| Sensor type                                                              | Range                           | Basic error |  |  |  |  |  |
|--------------------------------------------------------------------------|---------------------------------|-------------|--|--|--|--|--|
| Resistance thermometer (acc. to EN 60751:2009), measuring current 0.25mA |                                 |             |  |  |  |  |  |
|                                                                          | -50100                          | ±0.8        |  |  |  |  |  |
| Pt100°)                                                                  | 0250                            | ±1.3        |  |  |  |  |  |
|                                                                          | 0600                            | ±3.0        |  |  |  |  |  |
| Thermocouple of                                                          | J type (acc. to EN 60584-1:1997 | 7)          |  |  |  |  |  |
|                                                                          | 0250                            | ±2.0        |  |  |  |  |  |
| Fe-CuNi                                                                  | 0600                            | ±3.0        |  |  |  |  |  |
|                                                                          | 0900                            | ±4.0        |  |  |  |  |  |
| Thermocouple of I                                                        | K type (acc. to EN 60584-1:1997 | 7)          |  |  |  |  |  |
|                                                                          | 0600                            | ±3.0        |  |  |  |  |  |
| NiCr-NiAl                                                                | 0900                            | ±4.0        |  |  |  |  |  |
|                                                                          | 01300                           | ±6.0        |  |  |  |  |  |
| Thermocouple of S                                                        | S type (acc. to EN 60584-1:1997 | 7)          |  |  |  |  |  |
| PtRh10-Pt                                                                | 01600                           | ±8.0        |  |  |  |  |  |

") Resistance of the sensor line <10  $\Omega$  /wire; one must connect with wires of the same section and length.

Measurement time

0.33 s

#### Detection of error in the measurement circuit:

- termocouple, Pt100

overflow of measuring range

#### Kinds of outputs:

| - voltageless relay                          | switching contact, overload<br>capacity: 5 A/230 V,                    |
|----------------------------------------------|------------------------------------------------------------------------|
| - binary voltage                             | voltage 6 V, resistance limiting the current: 10 $\ensuremath{\Omega}$ |
| Way of output operation:                     |                                                                        |
| - reverse                                    | for heating                                                            |
| - direct                                     | for cooling                                                            |
| Rated operating conditions:                  |                                                                        |
| <ul> <li>supply voltage</li> </ul>           | 230 V a.c. ±10%                                                        |
| <ul> <li>supply voltage frequency</li> </ul> | 50/60 Hz                                                               |
| - ambient temperature                        | 0 <u>23</u> 50°C                                                       |
| <ul> <li>storage temperature</li> </ul>      | -20+70°C                                                               |
| - relative air humidity                      | < 85% (without water vapour condensation)                              |
| <ul> <li>external magnetic field</li> </ul>  | < 400 A/m                                                              |
| - warm-up time                               | 30 min                                                                 |
| <ul> <li>operating position</li> </ul>       | any                                                                    |
| Power consumption                            | < 4 VA                                                                 |
| Weight                                       | < 0,25 kg                                                              |
| Protection grade ensured                     |                                                                        |
| by the casing:                               | acc. to EN 60529 <sup>1)</sup>                                         |
| - from frontal side                          | IP 65                                                                  |
| - from terminal side                         | IP 20                                                                  |
| Additional errors in rated opera             | ting                                                                   |
| conditions caused by:                        |                                                                        |
| - compensation of reference                  |                                                                        |
| junction temperature changes                 | ≤ 2°C,                                                                 |
| - line resistance change of                  |                                                                        |
| the thermocouple sensor                      | $\leq$ 50% of the basic error value                                    |
| - change of the ambient                      | < 100% of the basic error/10 K                                         |
| lemperalure                                  | ≥ 100% OF the basic error/10 K                                         |

| Safety requirements acc. to EN 6                                  | Safety requirements acc. to EN 61010-1 <sup>1)</sup> |  |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>isolation between circuits</li> </ul>                    | basic                                                |  |  |  |  |  |  |
| <ul> <li>installation category</li> </ul>                         | 111                                                  |  |  |  |  |  |  |
| - pollution level                                                 | 2                                                    |  |  |  |  |  |  |
| <ul> <li>maximal phase-to-earth operating<br/>voltage:</li> </ul> |                                                      |  |  |  |  |  |  |
| <ul> <li>for supply circuit, outputs</li> </ul>                   | 300 V                                                |  |  |  |  |  |  |
| - for input circuits                                              | 50 V                                                 |  |  |  |  |  |  |
| - altitude above sea level                                        | 2000 m                                               |  |  |  |  |  |  |
| Electromagnetic compatibility:                                    |                                                      |  |  |  |  |  |  |
| - noise immunity                                                  | acc. to EN 61000-6-21)                               |  |  |  |  |  |  |
| - noise emission                                                  | acc. to EN 61000-6-41)                               |  |  |  |  |  |  |

1) Current standard editions are in Conformity Declaration

The coding way is given in the table 6.

#### Ordering codes:

| Temperat                                                                                                                                                                                                                                          | ure Controller RE71 -                                                                                                    | хх                                                       | x | xx       | x           | х           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---|----------|-------------|-------------|
| Input:<br>RTD Pt100<br>RTD Pt100<br>RTD Pt100<br>thermocouple J (Fe-CuNi)<br>thermocouple J (Fe-CuNi)<br>thermocouple K (NiCr-NiAI)<br>thermocouple K (NiCr-NiAI)<br>thermocouple K (NiCr-NiAI)<br>thermocouple S (PtRh10-Pt)<br>Output:<br>relay | (-50100°C)<br>(0250°C)<br>(0600°C)<br>(0600°C)<br>(0900°C)<br>(0900°C)<br>(0600°C)<br>(0900°C)<br>(01300°C)<br>(01600°C) | 01<br>02<br>03<br>04<br>05<br>06<br>07<br>08<br>09<br>10 | 1 |          |             |             |
| binary 0/6 V for SSR control<br>Version:<br>standard<br>custom-made <sup>*</sup>                                                                                                                                                                  |                                                                                                                          |                                                          | 2 | 00<br>XX |             |             |
| Language:<br>Polish<br>English<br>other*                                                                                                                                                                                                          |                                                                                                                          |                                                          |   |          | P<br>E<br>X |             |
| Acceptance tests:<br>without additional requirement<br>with an extra quality inspect<br>acc. to the customer's requ                                                                                                                               | ents<br>ion certificate<br>est*                                                                                          |                                                          |   |          |             | 0<br>1<br>X |

\* After agreement with the manufacturer.

Table 6

#### Example of Order:

The code: **RE71 - 06 2 00 E 0** means:

- RE71 temperature controller of RE71 type
  - **06** input: TC J, (0...900°C)
  - 2 output: binary 0/6 V for SSR control
  - 00 standard version
  - E English language
  - 0 without extra quality requirements

# 13. MAINTENANCE AND GUARANTEE

The RE71 controller does not require any periodical maintenance. In case of some incorrect operations:

#### 1. From the Shipping During the Period Given in the Annexed Guarantee Card

One should take the controller down from the installation and return it to the Manufacturer's Quality Control Dept.

If the unit has been used in compliance with the instructions, the Manufacturer warrants to repair it free of charge.

#### 2. After the Guarantee Period

One should turn over the controller to repair it in a certified service workshop.

The disassembling of the casing causes the cancellation of the granted guarantee.

Spare parts are available for the period of five years from the date of purchase.

Our policy is one of continuous improvement and we reserve the right to make changes in design and specifications of any products as engineering advances or necessity requires and revise the above specifications without notice.



#### Sifam Tinsley Instrumentation Ltd

1 Warner Drive, Springwood Industrial Estate, Braintree, Essex CM7 2YW Contact No. : +44 (0) 1376 335271 Email: sales@sifamtinsley.com www.sifamtinsley.co.uk